

## NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

## PREFACE

A major concern associated with the security of U.S. Department of State embassies and missions outside the contmental United States is to protect facilities and compounds from vehicular intrusions. The first line of protection for a facility or compound is a barrier uriultu the perimeter. This document, sponsored by the Department of State, Burcaw i Diplomatic security, Physical Standards Division, presents a mietnouolugy $L$, ambh thie appropriate data can be collected and analy-wa to make an mhim.a wecision ibout the perimeter barrier needed. It is incoluce to ensure the sumwon of barriers which provide the penetration prownion recommendud:y the Defurtment of State.

Developed unver the direction of Patrick Fitzgerald (Chief, Standards and Development), Douglas H. Georgian (Engineering Project Manager), and Gerald E. Meyers (Structural Engineer), the Perimeter Barrier Selection Guide was prepared by William T. Hathaway and Patricia K. Hammar of the Transportation Systems Center. The autriors would like to express their appreciation to Douglas Georgian for his detailed guidance and valuable insights into the needs of Department of State field personnel.


## METRIC / ENGLISH CONVERSION FACTORS

## ENGLISH TO METRIC

LENGTH (approximate)
1 inch (in) $=2.5$ centimeters (cm)
1 foot ( ft ) $=30$ centimeters $(\mathrm{cm})$
1 yard (yd) $=0.9$ meter $(m)$
1 mile $(\mathrm{mi})=1.6$ kilometers $(\mathrm{km})$

AREA (APPROXIMATE)
1 square inch (sq in, in²) $=6.5$ square centimeters ( $\mathrm{cm}^{2}$ )
1 square foot (sq $\left.\mathrm{ft}, \mathrm{ft}^{2}\right)=0.09$ square meter $\left(\mathrm{m}^{2}\right)$
1 square yard (sq yd, yd ${ }^{2}$ ) $=0.8$ square meter ( $\mathrm{m}^{2}$ )
1 square mile (sq mi, mi²) $\mathbf{~} \mathbf{2} \mathbf{2} \mathbf{6}$ square kilometers ( $\mathrm{km}^{2}$ )
1 acre $=0.4$ hectares (he) $=4,000$ square meters ( $\mathrm{m}^{2}$ )
MASS - WEIGHT (Appqoximate)
1 ounce $(o z)=28$ grams (gr)
1 pound $(\mathrm{lb})=.45$ kilogram $(\mathrm{kg})$
1 short ton $=2,000$ pounds $(\mathrm{lb})=0.9$ tonne $(\mathrm{t})$
VOLUME (APPROXIMATE)
1 teaspoon (tsp) $=5$ milliliters $(\mathrm{ml})$
1 tablespoon (tbsp) $=15$ milliliters (ml)
1 fluid ounce $(\mathrm{floz})=30$ milliliters ( ml )
1 cup $(c)=0.24$ liter ( 1 )
1 pint (pt) $=0.47$ liter ( $(1)$
1 quart (qt) $=0.96$ liter ( 1 )
1 gallon (gal) $=3.8$ liters $(1)$
1 cubic foot (cu ft, $\mathrm{ft}^{3}$ ) $=0.03$ cubis meter $\left(\mathrm{m}^{3}\right)$
1 cubic yard (cu yd, yd ${ }^{3}$ ) $=0.76$ cubic meter $\left(\mathrm{m}^{3}\right)$
TEMPERATURE (ExACT)
$[(x-32)(5 / 9)]^{\circ} F=y^{\circ} C$

## METRIC TO ENGLISH

LENGTH (approximate)
1 millimeter ( mm ) $=0.04$ inch ( in )
1 centimeter $(\mathrm{cm})=0.4 \mathrm{inch}(\mathrm{in})$
1 meter $(\mathrm{m})=3.3$ feet $(\mathrm{ft})$
1 meter $(\mathrm{m})=1.1$ yards $(\mathrm{yd})$
1 kilometer (km) $=0.6$ mile (mi)
AREA (Approximate)
1 square contimeter ( $\mathrm{cm}^{2}$ ) $=0.16$ square inch ( $s q$ in, $\mathrm{in}^{2}$ )
1 square meter $\left(\mathrm{m}^{2}\right)=1.2$ square yards (sq yd, yd ${ }^{2}$ )
1 square kilometer $\left(\mathrm{km}^{2}\right)=0.4$ square mile ( $\mathrm{sq} \mathrm{mi} \mathrm{mi}^{2}$ )
1 hectare (he) $=\mathbf{1 0 , 0 0 0}$ square meters $\left(\mathrm{m}^{2}\right)=\mathbf{2 . 5}$ acres

MASS - WEIGHT (ADOPOXIMATF)
$1 \mathrm{gram}(\mathrm{gr})=0.035$ ounce (oz)
1 kilogram (kg) $=2.2$ pounds $(\mathrm{lb})$
1 tonne $(t)-1.000$ kilograms $(\mathrm{kq})=1.1$ short tons
VOLUME (apdroximate)
1 mil!iliter $(\mathrm{ml})=0.03$ fluid ounce ( fl oz )
1 liter $(I)=2.1$ pints $(p t)$
1 liter $(1)=1.06$ quarts (qt)
1 liter ( 1 ) $=0.26$ gallon (gal)
1 cubic meter $\left(\mathrm{m}^{3}\right)=36$ cubic feet (cu ft, $\mathrm{ft}^{3}$ )
1 cubic meter $\left(\mathrm{m}^{3}\right)=1.3$ cubic yards (cu yd, yd ${ }^{3}$ )

TEMPERATURE (ExACN
$\{(9 / 5) y * 32]^{\circ} \mathrm{C}=x^{\circ} \mathrm{F}$

QUICK INCH-CENTIMETER LENGTH CONVERSION


For more exact and or other conversion factors, see NBS Miscellaneous Putlication 286. Units of Weights and Measures. Price \$2.50. SD Catalog No. C13 10286.

## TABLE OF CONTENTS

Section Page

1. INTRODUCTION ..... 1
1.1 Required Tools ..... 2
2. LLEVEL REQUIREMENTS ..... 3
2.1 Sketch the Compound Interior ..... 3
2.2 Label Appropriate L. Levels ..... 7
3. KLEVELREQUIREMENTS ..... 10
3.1 Sketch the Perimeter of the Compound ..... 12
3.2 Add Measurements and Attack Path Characteristics ..... 12
3.3. Find Radius of Curvature ..... 16
3.4 Determine Tire Traction Coefficient ..... 17
3.5 Calculate Maximum Impact Speed of Attack Vehicle ..... 17
3.5.1 Straight Paths ..... 20
3.5.2 Curves ..... 22
3.5.2.1 Curved Impact ..... 24
4. BARRIER DESCRIPTIONS ..... 28
4.1 Fixed (Passive) Barriers ..... 29
4.2 Active Barriers ..... 41
GLOSSARY ..... 50
APPENDIX ..... A- 1

## LIST OF FIGURES

Figure Page
2-1 Scaled Map of Compound Interior ..... 4
2-2 Example of a Rough Sketch of a Compound with Distances to Buildings Marked ..... 8
2-3 Map with L1 Levels Indicated ..... 9
2-4 Sketch with L1, L2, and L3 Levels Indicated ..... 9
3-1 Possible Attack Path Configurations ..... 11
3-2 Measuring Straight Paths ..... 14
3-3 Measuring Straight Paths Between Curves ..... 15
3-4 Measuring Curves ..... 16
3-5 Combination of Straight and Curved Paths ..... 19
3-6 Vehicle Speed as a Function of Acceleration Distance ..... 21
3-7 Example of Computing Acceleration from an Initial Speed ..... 22
3-8 Maximum Vehicle Speed as a Function of Radius of Curvature ..... 23
3-9 Example of Computing Speed Around Curves ..... 23
3-10 Example of a Curved Attack Path ..... 24
3-11 Impact Angle with Respect to Vehicle Speed ( $f=.5$ ) ..... 25
3-12 Impact Angle with Respect to Vehicle Speed ( $f=.9$ ) ..... 26
3-13 Another Example of a Curved Impact ..... 27
4-1 Above-Ground Views of DS-6 ..... 30
4-2 Cross Section of DS-6 ..... 31
4-3 Above-Ground Views of DS-7 ..... 32
4-4 Cross Section of DS-7 ..... 33
4-5 Above-Ground Views of DS-9 ..... 35
4-6 Cross Section of DS-9 ..... 36
4-7 Above-Ground Views of DS-3 ..... 37
4-8 Cross Section of DS-3 ..... 38
4-9 Above-Ground Views of DS-10 ..... 39
4-10 Cross Section of DS-10 ..... 40
4-11 DS-10 Configuration Allowing Pedestrian Access ..... 41
4-12 Vehirle Surface Barrier (VSB) 80187 ..... 43
4-13 EGS-1 Gate ..... 43

## LIST OF FIGURES (CONT.)

Figure Page
4-14 TT207s Hydraulic Wedge Barricade ..... 44
4-15 TT210 Hydraulic Bollards ..... 44
4-16 TT280 Linear Crash Gate ..... 45
4-17 Model 0915 Security Gate ..... 46
4-18 NNISB II Maximum Security Barrier ..... 46
4-19 Tl/Terio Venicie Restraining System ..... 48
4-20 Magnum Heavy Duty Vehicle Arrest System ..... 48
4-21 Portapungi Vehicie Barrier ..... 49
4-22 De-Fender Series Retractable Vehicle Bollard Barricades ..... 49
LIST OF TABLES
Table Page
1-1 Recommended Tools ..... 2
2-1 L Levels ..... 3
3-1 K Levels ..... 10
3-2 Tire Traction Coefficient as a Function of Surface Composition ..... 17
4-1 Fixed Barrier Type as a Function of Penetration and Speed ..... 29
4-2 Active Barrier Ratings ..... 41
A-1 Checklisi of Perimeter Mapping Considerations ..... A. 3
A. 2 Sines and Cosines ..... A-4


The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning reyuiroments.

## Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87-30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete informat:on. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

| $\mathbf{C}$ - Contract | PR - Project |
| :--- | :--- |
| $\mathbf{G}$ - Grant | TA - Task |
| PE - Program | WU - Work Unit |
|  | Element |

Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s)

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Eritar the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es) Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report Number (If known)

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans of...; To be published in... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distriujtion/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

$$
\begin{aligned}
& \text { DOD - } \text { See DoDD 5230.24, "Distribution } \\
& \text { Statements on Technical } \\
& \text { Documents." } \\
& \text { DOE - See authorities. } \\
& \text { NASA - See Handbook NHB } 2200.2 . \\
& \text { NTIS - Leave blank. }
\end{aligned}
$$

Block 12b. Distribution Code
DOD - Leave blank.
DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
NASA - Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Blocks 17.-19. Security Classifications. Selfexplanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (ie., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same $a$, report). An entry in this block is necessary if the abstract is to be limited If blank, the abstract is assumed to be unlimited

## 1. INTRODUCTION

Perimeter barriers are structures designed to protect an embassy by preventing an attacking vehicle from penstrating the embassy compound. Many types of protective barriers have been developed. The goal of this guide is to help you select the type or types of protective perimeter barriers that provide the amount of penetration protection recommended by the U.S. Department of State (DOS)

This document proviaes a metnodology by which the appropriate data can be collected and analyzed to make an informed decision about the barrier needed. To accomplish this, the magnitude of the threat to which the barrier will be exposed needs to be established. The magnitude of the threat will be determined by the speed of the attack vehicle and the amount of penetration, if any, that can be tolerated. Recognizing that different portions of the perimeter may be exposed to different magnitudes of threat, we need to divide the barrier into sections which will be subjected to the same magnitude of threat. Two factors constitute the threat. penetration (measured by the Llevel) and speed (measured by the K level). The L level defines how far the vehicle penetrates the barrier, and the $K$ level defines the speeds that the barrier is able to withstand. These two factors will be used to determine the type of barrier which should be selected.

The L level, a measure of the penetration allowed by a barrier, deemed acceptable in the barrier selection process is determined by how far the barrier is from the building(s) that it is protecting. For example, if the barrier allows 5 feet of penetration but the buildings are 105 feet away, it may provide sufficient protection. The method for determining the minimum L level for each section of barrier is presented in Section 2.

The K level corresponds to the maximum vehicle impact speed for which a particular barrier segment must be designed. The $K$ level data presented in this guide represent the impact severity to which a barrier has been tested without failure. For the barrier selection process presented here, there are three $K$ levels. To determine which barrier is required, you must determine the maximum possible speed at which the attack vehicle could strike a particular portion of barrier. The method for determining this maximum speed is presented in Section 3.

As Sections 2 and 3 describe how to choose barriers, Section 4 describes the various types of fixed (passive) and active barriers, including their correspording $i$ and $K$ levels of protection, from which to choose

### 1.1 REQUIRED TOOLS

The procedure for determining both the $K$ and $L$ levels begins with the preparation of a sketch. Therefore, the first step of the selection process involves assembling the tools needed to make these sketches. These tools are listed in Table 1-1. It will save time if you assemble all of your tools before beginning. While alternative tools are listed, taking the time to assembie as many of the recommended tools from Table. 1-1 as possible will increase the accuracy of your results.

TABLE 1-1. RECOMMENDED TOOLS

| Procedure | Recommended Tool | Adequate Tool |
| :---: | :---: | :---: |
| Measure distance | Measuring wheel calibrated <br> in tenths of feet able to <br> record up to 1,000 feet <br> wi hout resetting | 100 -foot tape measure |
| Measure gradient | Clinometer calibrated in <br> percent gradient | Traffic template (in <br> back of book) |
| Cketch compound <br> boundaries | Clipboard and graph paper <br> (graph paper included) | Graph Daper |
| Perform computations | Calculator with <br> trigonometric functions | Calculator used with <br> table of sine and <br> Cosine functions in <br> appendix |

Note: Before performing these procedures, see if scaled sketches of both the compound and the perimeter of the compound are available.

## Z. LLEVE:REQUIREMENTS

The various Lleveis cf penetration protection are listed in Table 2-1.
TABLE 2-1. LLEV:LS

| DOS Levei | Maximum Attack vehicle Penetration |
| :---: | :---: |
| $L 1$ | 20 to 50 Feet |
| $L 2$ | 3 to 20 Feet |
| 2 | 0 to 3 Feet |

To determire the L level required, the first step is to establish how far the vehicle may be allowed +, pentrate the barrier. To determine this, we need to know the distance between the barrier and the closest building(s)

### 2.1. SKETCH THE COMPOUND INTERIOR

The compound interior is the decisive factor in identifying $L$ level requirements. if there is a map drawn to scale available, such as the one shown in Figure 2-1, you can save a significant amount of time. However, do not rely solely on the accuracy of the map and its scale. You need to check the map scale by measuring the actual distance between a building and a barrier (a build ng and a barrier located near each other are most convenient). To do this, measure perpendicularly from the barrier to the corner of the building, and then compare this measurement to the scaled distance between the same building and barrier measured the same vay on the map

To assist in determining whether the map is drawn to scale, make a computation similar to the one presented in the following equation. First, look for the scale on the bottnm of the map; in Figure $2-1$, the scale is 1 inch $=200$ feet. If the distance that you measured between the building and the barrier is 120 feet, the corresponding distance on the map sticuld be 0.6 inches (as shown in the following equation)


FIGURE 2-1. SCALED MAP OF COMPOUND INTERIOR

$$
\begin{aligned}
& \text { measured dintunce in feet } \mathbf{X} \frac{\text { inch measurement in scale }}{\text { foot measurement in scale }}=x \text { inches } \\
& 120 \text { fett } X \frac{1 \text { inch }}{200 \text { feet }}=6 \text { inches }
\end{aligned}
$$

In the event that you need to compute the actual distance in feet from the scaled distance in inches on the map, the equation is

$$
\text { medsured distunce th miches } \mathbf{X} \frac{\text { ionime'asurement in scale }}{\text { inch medsurement in scale' }}-\text { distance in feet }
$$

If the distance measured on the map is 6 inches and you need to find the corresponding distance in feet, using the same scale, the previous equation would be completed as follows:

$$
6 \text { inches } X \frac{200 \text { fert }}{1 \text { inch }}=120 \text { feet }
$$

If the map is calibrated in metric units, the same equations may be used, substituting centimeters for inches in both the scale and the measured distance in the equation and meters for feet in both places. Do not mix feet or inches with meiric measurements. Another way oi working with a map in metric units is to convert all of the metric measurements into feet and inches. This is done as follows:

$$
\begin{array}{llll}
1 \text { centimeter } & =.39 \text { inches } & & 1 \text { inch }=2.54 \text { centimeters } \\
1 \text { meter } & =3.28 \text { feet } & & 1 \text { foot }=.305 \text { meters }
\end{array}
$$

distance in meters $\mathbf{X} \frac{3.28 \text { feet }}{1 \text { meter }}=$ distance in meters $\mathbf{X} 3.28 \mathrm{ft} / \mathrm{m}$

$$
=\text { distance in feet }
$$

distance in centimeters $\mathbf{X} \frac{.39 \text { inches }}{1 \mathrm{~cm}}=$ distance in incthes

If you need to convert from U.S. to metric measurements, use the following equations

$$
\begin{aligned}
& \text { distance in feet } \mathbf{X} \frac{.305 \text { meter }}{1 \text { feet }}=\text { distance in meters } \\
& \text { distance in inches } \mathbf{X} \frac{2.54 \mathrm{~cm}}{1 \text { inch }}=\text { distance in centimeters }
\end{aligned}
$$

If there is no scale on the map or if the scale on the map is not accurate (for example, if 1 inch on the map displayed in Figure 2-1 did not equal 200 feet, a measurement of 120 feet in the field would not correspond to 0.6 inch on the map), you will need to develop your own scale. To establish a scale, repeat the aforementioned measurement; that is, measure the distance between a building and a barrier, and measure this distance on the map. Then set up the following scale
measured distance in feet $=$ measured distance in inches
To simplify your scaling factor, divide both sides by the number of inches measured:

$$
\begin{aligned}
& 90 \text { feet }=.4 \text { inches } \\
& \frac{90 \text { feet }}{4}=\frac{.4 \text { inches }}{4} \\
& 225 \text { fret }=1 \text { inch }
\end{aligned}
$$

Then measure two other building and barrier locations in the compound and on the map, and establish a scale for each location. If all these scales are equivalent, use this scale and the map to compute the rest of the distances. If they are not the same, follow the directions below.

If no suitable map is available, you will need to sketch the compound. The sketch should include the perimeter barrier (or its proposed location) and all buildings within the barrier to be protected. You will need to measure and record the following:

1. the length of each section of compound boundary and the angle between sections using the traffic template and the instructions in the back of the guide:
2. the angle of the turns and the radius of the bends in the barrier; and the distance between each corner of the compound buildings and the nearest two compound boundaries. (Note that this distance should be prcjected at a 90 -degree angle from the compound boundary.)

Record these measurements on the rough sketch of the compound (Figure 2-2). These measurements will be used to establish the allowable Llevel.

### 2.2 LABEL APPROPRIATE L LEVELS

DOS standards require that an attack vehicle be stopped no less than 100 feet from the exterior of each building. Therefore a barrier which allows penetration equal to the distance between the barrier and the closest building minus 100 feet is acceptable. (For example, if the barrier is 125 feet from the closest building, 25 feet of penetration could theoretically be allowed.)

Take either the scaled map or the sketch which you completed, and analyze it for distances. First, identify all barrier sections which are more than 150 feet from any interior building, and label all such sections L1 (Figure 2-3), which is the minimum L level required. Next, find all compound boundary sections which are more than 120 feet and less than 150 feet from any interior building. Label all these sections L2. As shown in Figure 2-4, all other compound boundary sections are within 120 feet of a building and should be labeled L3. If the exact distance for any portion of the boundary cannot be determined from the sketch or map (thereby making it unclear which category is appropriate), you must go into the compound and measure the area.


FIGURE 2-2. EXAMPLE OF A ROUGH SKETCH OF A COMPOUND WITH DISTANCES TO BUILDINGS MARKED


FIGURE 2.3. MAP WITH L1 LEVELS INDICATED


580 fo
FIGURE 2-4. SKETCH WITH L1, L2, AND L3 LEVELS INDICATED

## 3. K LEVEL REQUIREMENTS

To identify the required K level (see Table 3-1), we must again divide the barrier into areas with the same level of threat. Different sections of the embassy perimeter will be oriented in such a manner that they will be exposed to different impact speeds. To identify the maximum $K$ level required for a specific segment of the compound boundary, the most severe impact condition (a combination of vehicle speed and impact angle) must be determined.

TABLE 3-1. K LEVELS

| DOS Level | Attack Vehicle Speed (Mph) |
| :---: | :---: |
|  | Nominal Speed |
| K4 | 30 |
| K8 | 40 |
| $K 12$ | 50 |

The maximum impact speed of an attack vehicle is a function of the topography of the area surrounding the compound boundary. It depends on the distance available for vehicle acceleration, the radius of the turns the vehicle must make to reach the barrier, the path surface, and the gradient. As shown in Figure 3-1, the individual segments of the barrier can be struck from a variety of paths. In this example, the compound is shielded by closely spaced buildings on two sides of the exterior of the perimeter barrier. The two remaining sides (north and east) are vulnerable to an attack vehicle. Two streets, each a potential attack path, lead directly to the compound boundary. It is apparent that certain segments of the compound boundary can be attacked from more than one street. In addition, each street contains an infinite number of impact locations. For example, the north boundary could be struck by an attack vehicle moving along street 1 in either direction or street 2 heading south.

While moving along these streets, the attack vehicle can strike the compound boundary at any location along the perimeter. As a result, a vast number of potential impact conditions (combinations of vehicle speed and impact angle) occur at any point along the compound boundary. $K$ threats, as defined by DOS, correspond to the speed of a perpendicular attack (from a 90 -degree angle between

the vehicle and the barrier). Therefore, to compute the effective loading on the barrier, we will consider only the component of the speed perpendicular to the barrier. This effective loading is a function of both the vehicle impact speed and angle at which the vehicle strikes the compound boundary. The goal of this section is to find the impact conditions that lead to the greatest perpendicular speed for each section of the barrier.

### 3.1 SKETCH THE PERIMETER OF THE COMPOUND

As the initial step in establishing the maximum vehicle impact speed and associated impact angle, you must sketch the area surrounding the compound. This sketch will be used to identify potential attack vehicle paths, thereby establishing the $K$ threats. Although the sketch will later be completed in more detail, where needed, it will save time later on to be accurate now.

This sketch will include the edge of the compound perimeter and the area within 1,200 feet of the perimeter. Use the map or sketch of the compound boundary discussed in Section 2.1 to correctly draws the compound in this sketch. (You may change the scale of this drawing, but try to keep the proportions of the boundary the same.)

To assist in drawing the sketch, walk around the compound perimeter so that you can identify all the items as you draw them. This will help you place the items proportionally on the rough sketch. Because the area to be included may be large, you may want to draw separate sketches showing the 1,200 -foot area immediately in front of each boundary. You should also label all buildings as you draw them. This will help you to orient the sketch correctly. The checklist in Table A-1 lists some of the items you should consider when sketching.

### 3.2 ADD MEASUREMENTS AND ATTACK PATH CHARACTERISTICS

As you look at the sketch you have just completed, you should be able to identify various paths that may be taken to reach the barrier. These paths need to be analyzed to establish the potential attack paths. To properly analyze a path, you will need to perform the following procedures:
(1) Measure the distance between the compound boundary and a constraint boundary (anything that cannot be driven over, such as walls, buildings, waterways deeper than 3 feet, etc.)
(2) Measure the width of paths (streets, alleys, sidewalks, lawns, parks, etc.) parallel or perpendicular to the compound boundary. (Note that the width should be measured as the entire surface along which an attack vehicle can travel. For example, if there are sidewalks un either side of the street, the width of the street should include the width of the sllewalks.) If the width of the path is less than 5 feet, the path will not allow passaje of a vehicle and may be disregarded.
(3) Examine the surtuce composition of each attack path. Is it asphalt, brick, concrete, gravel, or soll?
(4) Calculate the gradient, in degrees, of each potential attack path using the clinometer, if available, as recommended, or the traffic template and instructions in the back of this guide. Record the gradient on the sketches, " $G=X$ "". Be sure to record the direction of the gradient: " + " if the compound is uphill, "-" if the compound is downhill. (See the instructions for making these measurements on the traffic template or clinumeter.) If the gradient is uphill at greater than 60 degrees, the path is not negotiable
(5) Measure each straight path. Figure 3-2 shows a number of straight paths. In this figure, a straight path would be measured from circle to circle (i.e., "a" to "b", " $c$ " to " $d$ ". etc.). To allow for more than one attack path to use each straight section, the straight paths need to be measured in terms of unbroken sections (i.e., those segments not interrupted by intersections or curves). If there is more than one way to reach the beginning of a straight section, it is important to find the maximum speed at which the vehicle can enter that section. Since this method assumes acceleration on only straight sections of path, where curves are present, it will be necessary to measure straight paths from the middle of the curve or intersection that initiates the straight section of attack path to the middle of the curve or intersection which ends the straight section. Since these straight paths will overlap our measurements for curves, any acceleration which is possible during the curves will be included in the calculation of the acceleration on the straight paths.

For intersections, the center of the intersection will be an appropriate end point for the preceding straight section and any turns that could be made in order to reach


FIGURE 3-2. MEASURING STRAIGHT PATHS
the new straight section. Straight sections between curves on a curved road will be measured as shown in Figure 3-3. The " $B$ " and " $C$ " points in each triangle represent the two end points of the curve, and the " $A$ " points are the center points of the curves. Measure from the center of the first curve to the center of the second curve. Any straight sections leading directly to the barrier will be measured the full distance to the barrier (as shown in Figure 3-2).


FIGURE 3-3. MEASURING STRAIGHT PATHS BETWEEN CURVES
(6) Measure the Curvature Characteristics. Find the points along the road edge where the curve begins and ends (on either side of these points the vehicle is going straight), and measure the distance between them. As shown in Figure 3-4, this distance is the chord (C). At the midpoint of the chord, measure the distance between the chord and the road edge, which is the middle ordinate ( $M$ ). If you are unsure of the exact points where the curve begins and ends or if you cannot measure the distance because of an obstacle, take multiple measurements of the same curve using 100 -foot or 50 -foot chord lengths.

If the curve is too small to be passable by a vehicle without backing up, consider this portion of the path closed off.

Record all measurements on the sketch.


FIGURE 3-4. MEASURING CURVES

### 3.3 FIND RADIUS OF CURVATURE

Next, using the chord/middle ordinate method, find the radius (R) of each of the curves that you measured. That is, insert the distances you measured for the chord $(C)$ and the middle ordinate $(M)$ into the following formula:

$$
R=\frac{C^{2}}{8 M}-\frac{M}{2}
$$

Where:

$$
\begin{aligned}
& R=\text { The radius of curvature in feet } \\
& C=\text { The length of the chord in feet } \\
& M=\text { The length of the middle ordinate in feet }
\end{aligned}
$$

If $C=100$ feet and $M=6$ feet:

$$
\begin{gathered}
R=\frac{100^{\prime \prime}}{8 X 6} \cdot \frac{6}{\because} \\
R=\frac{100 X 100}{48}+3 \\
R=\frac{10.000}{48} \cdot 3 \\
R=208.3+3-2113 \text { firt }
\end{gathered}
$$

If you took multiple meas 1 rements, use the the average radius calculated from those measurements as the radius of curvature. If the radius of the curve is more than 186 feet on a paved surface or 334 feet on an unpaved surface, the vehicle can negotiate the curve at 50 mph , and the curve can therefore be considered a straight path.

### 3.4 DETERMINE TIRE TRACTION COEFFICIENT

A factor which influences the speed at which an attack vehicle can travel is the tire traction coefficient diong the various portions of the path. Therefore, recording the tire traction coefficient of euch portion of the path is important in selecting a protective barrier. Use Tuble 3-2 to determine the tire traction coefficient for ea, h portion of path. W:ite " $f=$ " followed by the tire traction coefficient on the sketch of the compound exterior.

TABLE 3-2. TIRE TRACTION COEFFICIENT AS A FUNCTION OF SURFACE COMPOSITION

| Surface Composition | Tire Traction Coefficient <br> $(\mathrm{f})$ |
| :---: | :---: |
| Paved (asphalt, tar, brick, or concrete) | 0.9 |
| Unpaved (gravel or soil) | 0.5 |

Note:
For portions of the path with varying surface compositions, print the largest of the tire traction coefficients for the paths on the sketch.

### 3.5 CAL CULATE MAXIMUM IMPACT SPEED OF ATTACK VEHICLE

The speed of the attack vehicle depends on the distance availshle for acceleration on straight paths and the radius of the curves. When deciding whether an attack vehicle could use a path, consider the width of the path and the radius of turns on the path. If you are unsure of the width or radius of potential attack paths, measure them Note Paths can be on any surface that can be driven over, including streets, lawns, parks, sidewalks, and beaches.

For each section of the barrier, identify the possible attack paths. ine maximum speed against which you must protect is the speed which can be attained by an attack vehicle following any of these paths. The maximum speed for which barriers are tested is 50 mph , which is a K 12 threat level. For each section of the perimeter, you must determine whether a vehicle can, while traveling over an attack path, achieve a speed of at least 50 mph . If the vehicle can achieve a $50-\mathrm{mph}$ impact speed or greater, the corresponding section of the perimeter requires a $50-\mathrm{mph}$ barrier (K12). Since $50 \mathrm{mph}(\mathrm{K} 12$ ) is the maximum protection level, if a path permitting a 50 mph impact speed is found, no otiner paths for that section of barrier need be analyzed.

To determine the attack vehicle speed for each section of barrier, you must use the rough sketch of the perimeter and your knowledge of the area surrounding the compound. With these, you should identify for each section of the perimeter the longest, straightest, and most level path that an attack vehicle could take to reach each section of the compound boundary.

A straight path, as identified in Section 3-2, is the area over which the vehicle may accelerate. To compute velocity over a distance, you need to know (1) the velocity at the beginning of the straight section, (2) the distance, and (3) the gradient. We will assume that a vehicle enters the area 1,200 feet away from the compound at 30 mph. The initial velocity for any straight paih which does not begin 1,200 feet from the barrier will need to be calculated. This initial velocity will be equal to the maximum ending velocity of the paths which lead to this point. The path which leads to this point will be a combination of straight sections and curved sections. The straight sections, as shown in Figure 3-3, are measured from the center of the curves. The curves are measured from the beginning of the curve to the end of the curve, and only the largest radius of curvature (i.e., the curve allowing the fastest speed) which can be negotiated between the constraints need be measured. The measurement for the curve does not need to start along the straight path. It can be offset from the straight path, as shown in Figure 3-5. Thus some portions of the roadway contain both a curved and a straight section. The curve "E-E", in Figure 3-5, uses the widest area available and overlaps a portion of both the straight sections "D-B" and "B-C"

Three straight paths, "A-B", "B-C", and "B-D", are shown with solid lines. The curve


FIGURE 3-5. COMBINATION OF STRAIGHT AND CURVED PATHS
" $E-E$ " is shown with a dotted line. There are two paths the vehicle can take to reach point " $C$ " in our example: " $A-B$ to $B-C$ " and " $D-B$ to $B-C$ ".

Path "A-B to B-C" includes two straight sections of path. To calculate the speed at point " $C$ " using this path, you need to know the speed at point " $A$ ", the gradient in each straight path, the road surface of each straight path, the distance between " $A$ " and " $B$ ", and the distance between " $B$ " and " $C$ ". (These measurements should have been recorded on your sketch in Section 3-2.) The speed at point " $A$ " is used first (along with the gradient and the coefficient of traction) to calculate the speed at which the vehicle can reach point " $B$ "; this speed is then used as an initial speed (along with the gradient and the coefficient of traction) to calculate the speed at which the vehicle can reach point " C ". Section 3.5.1 explains how to compute the speed which can be obtained over these straight paths.

Path " $D-B$ to $B-C$ ", on the other hand, requires a turn, " $E-E$ ". Although the curve " $E$ $E$ " shown ir, Figure $3-5$ goes past point " $B$ ", it is necessary to make the curve before entering straight section " $B-C$ ". To calculate the speed at point " $C$ " using this path,
you need to know the speed at point " $D$ ", the gradient in each section, the road surface of each straight path, the radius of the curve " $E-E$ ", the distance between " $D$ " and " $B$ ", and the distance between " $B$ " and " $C$ ". (These measurements should have also been recorded on your sketch in Section 3-2.) The speed at point " $D$ " is used first (along with the gradient and the coefficient of traction) to calculate the speed at which the vehicle can reach point "B". An additional check needs to be done, however, to see if the curve can be negotiated at this speed. The radius of curve " $E-E$ " is used (along with the coefficient of traction) to compute the maximum speed at which the vehicle can negotiate the curve. These two speeds (the speed which can be reached along the straight path "D-B" and the maximum speed at which the vehicle can negotiate the curve) are compared. The lesser of these two numbers is used as the initial speed of the vehicle (along with the gradient and the coefficient of traction) to calculate the speed at which the vehicle can reach point " $C$ ". Section 3.5.1 explains how to compute the speed over straight paths, and Section 3.5.2 explains how to compute the maximum speed at which a vehicle can negotiate a curve.

### 3.5.1 Straight Paths

The vehicle enters the straight path at an initial speed " $V_{T}$ ". For a straight path, the gradient $(G)$ of the hill will slow or quicken the vehicle accordingly. To adjust for the gradient, take the distance measured ( $\$$ ), and multiply it by the cosine of " G ", as shown in the following equation. (See Table A-2 for a list of sines and cosines.) Use this adjusted " $S$ " to find the speed:
$S_{E}=S_{M} \times(1+\operatorname{Cosin} E(G)$
Where:
$S_{E}$-Equivalent distance u'ith zero gradient
$S_{n}=$ Measured distance
$G=$ Gradient
In this equation, cosine " $G$ " will be negative if the vehicle is going uphill and positive if the vehicle is going downhill.

Figure 3-6 shows the speed versus distance for a medium-duty, fully loaded truck (a Ford F600), which is the attack vehicle that we will consider, at maximum acceleration and 0 gradient. Figure 36 is a graph of data obtained from the Ford Motor Company.


FIGURE 3.6. VEHICLE SPEED AS A FUNCTION OF ACCELERATION DISTANCE

To find the maximum speed at the end of any straight path, follow the example presented in Figure 3-7. In this example, the initial speed will be 32 mph and the distance ( $S$ ) will be 700 feet. The following steps explain the procedure to be used:
(a) Label the speed $V_{T}=32 \mathrm{mph}$ on the vertical axis ul we graph
(b) Draw a line parallel to the horizontal axis from $V_{T}=32$ to the point where that line intersects the curve
(c) Draw a vertical line (parallel to the speed axis) down from this intersection point to the horizontal axis.
(d) Read the acceleration distance at this point from the horizontal axis ( 370 feet in this example).
(e) Label the point $T=370$ feet.
(f) Add the distance $S$ (in feet) to the value of $T$ :

$$
S+T=700+370=1,070 \text { feet }
$$



FIGURE 3-7. EXAMPLE OF COMPUTING ACCELERATION FROM AN INITIAL SPEED
(g) Find the distance $S+T(1070$ feet $)$ on the horizontal axis and label this point $Z$.
(h) Draw a vertical line (parallel to the speed axis) up from point $Z$ to the curve.
(i) Draw a horizontal line (parallel to the distance axis) from the point of intersection to the speed axis.
(j) Read the speed $V_{Z}$ from the vertical axis ( $V_{Z}=45.5 \mathrm{mph}$ in this example).
(k) Round $V_{Z}$ up to the next highest whole number ( 46 mph ).

Write the speed " $V_{Z}$ " along the distance over which it is attained.

Note: The gradient is assumed to be zero (level ground). Had the gradient been 10, it would have been necessary to establish an equivalent distance "S" prior to using Figure 3-7.

### 3.5.2 Curves

There is a maximum speed at which a vehicle can negotiate a curve. Using the graph in Figure 3-8, the traction coefficient, the initial speed, and your measurements for the radius of curvature, the maximum speed for each curve can be determined. For example, you can see in Figure $3-9$ that if " $f=.5$ " (unpaved) and the radius of the

Vehicle speed
(MPH)


FIGURE 3-8. MAXIMUM VEHICLE SPEED AS A FUNCTION OF RADIUS OF CURVATURE


FIGURE 3-9. EXAMPLE OF COMPUTING SPEED AROUND CURVES
curve is 160 feet, the maximum speed at which the curve can be negotiated is 34.5 mph . There are two curves on the graph in Figure 3-8, one for " $f=.5$ " and the other for " $f=9$ " (paved); use the curve of the correct traction coefficient of the path being measured. In Figure 3-5, a vehicle entering curve "E-E" will begin with the speed resulting from the straight path "D-B". Since we have assumed no acceleration on curves, the curve camot lead to a speed greater than that attaıned on the path " $D-B$ ", and the vehicle cannot travel from " $D$ " to " $B$ " to " $C$ " without making the curve " $E-E$ ". Therefore, the ending speed from the straight path " $D-B$ " followed by the curve " $E-E$ " is the lower of either the speed at which the vehicle enters the curve or the speed at which the vehicle can negotiate the curve. Write this speed at the curve on your sketch. Consider this as a possible initial speed for the straight path " $B-C$ ".
3.5.2.1 Curved Impact - Any path where the vehicle must turn in order to strike the barrier is considered a curved impact. An example of such a path is given in Figure 310. The angle of impact affects the amount of the velocity imparted head-on to the barrier. The perpendicular component of the velocity determines the seriousness of the impact. The offset distance is the distance in which the vehicle can negotiate the turn. In Figure 3-10, the offset " $D_{Z}$ " is the distance from the constraint boundary to

$=$ Compound Boundary
FIGURE 3-10. EXAMPLE OF A CURVED ATTACK PATH
the barrier. Figures 3-11 and 3-12 show the impact angle versus speed for a given offset $\left(D_{Z}\right)$ for $f=.5$ and $f=9$, respectively. To use these graphs you need to know " F ", " $D_{Z}$ ", and the speed " $v$ " of the vehicle entering this portion of path. Use the graph with the appropriate " $f$ " value. Find " $v$ " along the horizontal (speed) axis. Draw a vertical line to the curve for the appropriate " $D_{z}$ ". Draw a horizontal line
from this point to the vertical (impact angle) axis. Read the angle at this point. Use this angle to perform the following calculation, which gives you the perpendicular speed (Vp):

$$
V p=v \sin \theta
$$

Use this perpendicular speed to establish $K$ level requirements. For the IMPACT ANGLE, $)$
(DEGREES)


FIGURE 3-11. IMPACT ANGLE WITH RESPECT TO VEHICLE SPEED $(f=5)$

IMPACT ANGLE,
(DEGREES
(DEGREES)


FIGURE 3-12. IMPACT ANGLE WITH RESPECT TO VEHICLE SPEED $(f=.9)$
in Figure 3-10, this speed will be applicable to each section of barrier with the same initial values for " $v$ ", " $f$ ", and " $D_{Z}$ ".

Figure $3-13$ is another example of a curved impact. For this example let path 1 intersect the barrier at a speed equal to the straight path to point " $A$ ". This speed is

applicable to the section of barrier the same distance as " $D_{Z}$ " from the end of the barrier (shown with a dotted line in Figure 3-13). The barrier section further from the constrained corner than " $\mathrm{D}_{2}$ " is subject to a curved impact from street 2 similar to the one shown in Figure 3-10. Remember each section of barrier must be examined for the longest, straightest, and most level path. Each possible curved impact must be analyzed for the most direct and fastest possibility.

## 4. BARRIER DESCRIPTIONS

DOS specifications define three levels of attack-vehicle penetration (L levels), presented in Table 2-1. According to these specifications, acceptable performance of the protective barrier requires that

1. the attack vehicle is stopped in one of the three penetration distances presented in Table 2-1;
2. the attack vehicle is disabled after the initial penetration; and
3. the protective barrier is intact and in place after the impact.

Penetration distance is a function of barrier design and vehicle speed; the greater the speed of the attack vehicle, the deeper the penetration. DOS specifications define three levels of attack-vehicle speed (K levels), presented in Table 3-1.

Now that we know the L level and K level needed for each barrier segment, we can figure out the most economical way to provide protection. The following pages describe the barriers which have been tested. Included in the description are the L and K levels which this barrier will meet. After you find the barriers that match your requirements, you can consider secondary barrier selection factors such as cost, aesthetics, etc.

Barriers are selected for the minimum penetration distance (highest $L$ value) and for the maximum vehicle speed (highest $K$ value) given the topography and physical constraints of the area surrounding the compound.

There are two types of protective barriers: fixed (passive) barriers and active barriers. Both types are permanent installations; that is, they are usually an extension of or are anchored to a foundation (for example, reinforced concrete) in the ground. Fixed barriers are designed to remain in their original deployed configuration, and cannot be lowered or opened to permit vehicle or pedestrian passage. Such barriers are employed to enclose virtually the entire accessible perimeter of a compound.

Active barriers (gates) are integrated into gaps left in the fixed barrier to permit vehicle and pedestrian access to the compound. Active barriers can assume two operational configurations. First, in their normal deployed position, they constitute an above-ground barrier identical in function to their adjacent passive counterparts. Second, these security devices can be lowered or rotated on a vertical axis to permit passage to and from the compound.

### 4.1 FIXED (PASSIVE) BAFRIERS

DOS standards require thut an altack vehicle is stopped before it comes within 100 feet of a building inside the compound boundaries. Use Table 4-1 to identify the types of fixed barriers whicin do not allow the attack vehicle to come within 100 feet of a compound building at the maximum attack-vehicle speed for each section of the perimeter. Descriptions of the different types of fixed barriers follow.

TABLE 4-1. FIXED BARRIER TYPE AS A FUNCTION OF PENETRATION AND SPEED

| Barrier | Description | L Level | K Level (max speed) |  |
| :---: | :---: | :---: | :---: | :---: |
| DS-3 | Concrete-filled steel bollards | L3 | K12 | ( 50 mph ) |
| DS-6 | Reinforced concrete inverted $T$ | 13 | K8 | (40 mph) |
| DS-7 | Reinforced concrete inverted T | L3 | K4 | (30 mph) |
| DS-9 | Reinforced concrete planter | L3 | K12 | ( 50 mph ) |
| DS-10 | Concrete-filled steel bollards in groups of 3 | L2 | K12 | ( 50 mph ) |

Reinforced Concrete Inverted T (DS-6 and DS-7)

An inverted T barrier is a wall resting on a footing. The entire footing and part of the wall are embedded in the existing soil or in a crushed stone mix.

Figure 4-1 presents two abo se-ground views of barrier DS-6, and Figure 4-2 shows a drawing of its representative cross section. The same information for barrier DS-7 is presented in Figures 4-3 and 4-4, respectively.


FIGURE 4-1. ABOVE-GROUND VIEWS OF DS-6



FIGURE 4-3. ABOVE-GROUND VIEWS OF DS-7


FIGURE 4-4. CROSS SECTION OF DS-7

Planter barriers are 3-foot-thick reinforced concrete vadiis resting on a footing. Part of the wall and the entire footing are embedded in the existing soil or in a crushed stone mix. The walls contain regularly spaced cavities that are filled with soil. Flowers or shrubs are planted in the soil to enhance the barrier's appearance.

Above-ground views of barrier DS-9 are presented in Figure 4-5. A representative cross section of the barrier is shown in Figure 4-6.

## Concrete-Filled Steel Bollards (DS-3 and DS-10)

Bollard barriers consist of strong concrete-filled steel pipes embedded in a reinforced concrete footing. The footing is embedded in the existing soil or in a crushed stone mix.

Figure 4-7 presents above-ground views of barrier DS-3. Its representative cross section is depicted in Figure 4-8. Similar information for barrier DS-10 is presented in Figures 4-9 and 4-10, respectively. DS-10 is designed for pedestrian access and should be used in small sections in conjunction with other barriers. Figure 4-11 is an example of how DS-10 could be used.


FIGURE 4-5. ABOVE GROUND VIEWS OF DS-9


FIGURE 4-6. CROSS SECTION OF DS-9


FIGURE 4-7. ABOVE-GROUND VIEWS OF DS-3


VERTICAL SECTION
FIGURE 4-8. CROSS SECTION OF DS-3


FIGURE 4-9. ABOVE-GROUND VIEWS OF DS-10


FIGURE 4-10. CROSS SECIION OF DS-10


FIGURE 4-11. DS-10 CONFIGURATION ALLOWING PEDESTRIAN ACCESS

### 4.2 ACTIVE BARRIERS

Use Table 4-2 to identify the types of active barriers which meet the penetration protection level selected and the maximum attack-vehicle speed for each entrance into the compound. Thirteen active barriers have been certified. A descriptiun of each follows.

TABLE 4-2. ACTIVE BARRIER RATINGS

| Manufacturer | Model | Rating |
| :--- | :---: | :---: |
| Barrier Concepts, Inc. | VSB 80187-P10 | $\mathrm{K} 12 / \mathrm{L} 1$ |
|  | VSB 80187-F10 | $\mathrm{K} 12 / \mathrm{L} 3$ |
| Catalpa Gate Company, Inc. | EGS-1 | $\mathrm{K} 12 / \mathrm{L} 3$ |
| Delta Scientific Corporation | TT207s | $\mathrm{K} 12 / \mathrm{L} 3$ |
|  | TT210 | $\mathrm{K} 4 / \mathrm{L} 2$ |
|  | TT280 | $\mathrm{K} 12 / \mathrm{L} 2$ and K8/L3 |
| Meridian Engineering | Model 0915 | $\mathrm{K} 12 / \mathrm{L} 2$ |
| Nasatka Barrier, Inc. | NMSBII | $\mathrm{K} 12 / \mathrm{L} 3$ |
|  | NMSBIV | $\mathrm{K} 12 / / \mathrm{L} 3$ |
| Terio International, Inc. | TI/Terio | $\mathrm{K} 12 / \mathrm{L} 3$ |
| Western Industries, Inc. | Magnum | $\mathrm{K} 12 / \mathrm{L} 3$ |
|  | Portapungi | De-Fender |

The VSB has both a portable surface-mounted model ( $P$-10) and a fixed model (F-10). They are manufactured by Barrier Concepts, Inc. (See Figure 4-12 for photograph.)

## EGS-1 Gate

The EGS-1, manufactured by Catalpa Gate Company, Inc., is a vertical gate set in a reinforced concrete foundation. (See figure 4-13 for photograph.) The aboveground dimensions are 12 feet wide by 57.5 inches high by 17 feet long. The foundation excavation is 6 feet deep by 20 feet wide by 17 feet long.

## TT207s Hydraulic Wedge Barricade

The TT207s, manufactured by Delta Scientific Corporation, is a wedge-shaped gate set in a reinforced concrete foundation. (See Figure 4-14 for photograph.) The above-ground dimensions are 38 inches high by 64.5 inches long with an optional width of 72 to 144 inches. The foundation excavation is 52.5 inches deep by 97.5 inches long with an optional width of 114.25 to 186.25 inches.

## TT210 Hydraulic Bollards

The TT210, also manufactured by Delta Scientific Corporation, is a set of three retractable steel bollards encased in a reinforced concrete foundation. (See Figure $4-15$ for photograph.) The above-ground dimensions are 30 inches high by 10.75 inches in diameter. The foundation excavation is 60 inches deep by 30 inches in diameter.

## TT280 Linear Crash Gate

The TT280, also manufactured by Delta Scientific Corporation, is a vertical gate set in a reinforced concrete foundation. (See Figure 4-16 for photograph.) The aboveground portion is a swing gate. The foundation excavation is 54 inches deep by 48 inches wide by 96 inches long.


FIGURE 4-12. VEHICLE SURFACE BARRIER (VSB) 80187


FIGURE 4-13. EGS-1 GATE


FIGURE 4-14. TT207s HYDRAULIC WEDGE BARRICADE


FIGURE 4-15. TT210 HYDRAULIC BOLLARDS


FIGURE 4-16. TT280 LINEAR CRASH GATE

## Model 0915 Security Gate

The Model 0915, manufactured by Meridian Engineering, is a wedge-shaped gate set in a reinforced concrete foundation. (See Figure 4-17 for photograph.) The above-ground dimensions are 38 inches high by 88 inches long by 106 inches wide. The foundation excavation (which includes a section of backfill) is 50 inches deep by 122 inches wide by 144 inches long.

## NMSB II Maximum Security Barrier

The NMSB II, manufactured by Nasatka Barrier, Inc., is a wedge-shaped gate set in a reinforced concrete foundation. (See Figure 4-18 for photograph.) The aboveground dimensions are 31 inches high by 168 inches wide ( 10 feet of road width) by 144 inches long. The foundation excavation is 1 foot deep by 14 feet long by 12 feet wide with a 30 -inch leg along the front edge.

## NMSB IV Maximum Security Barrier

The NMSB IV, also manufactured by Nasatka Barrier, Inc., is a wedge-shaped gate set in a reinforced concrete foundation. The NMSB IV looks very sim.!ar to the NMSB II.


FIGURE 4-17. MODEL 0915 SECURITY GATE


FIGURE 4-18. NMSB II MAXIMUM SECURITY BARRIER

## TI/Terio Vehicle Restraining System

The $\mathrm{TI} /$ Terio Vehicle Restraining System, manufactured by Terio International, Inc., is a vertical gate consisting of a wire rope net secured to a steel I-beam frame, which is set in a reinforced concrete foundation. (See Figure 4-19 for photograph.) Fully extended, the barrier is over 6 feet high and 10 to 12 feet wide.

## Magnum Heavy Duty Vehicle Arrest System

The Magnum, manufactured by Western Industries, Inc., is a wedge-shaped gate set in a reinforced concrete foundation. (See Figure 4-20 for photograph.) The aboveground dimensions are 32 inches high by 52 inches long with an optional width of 71 to 155 inches. The foundation excavation is 5 feet deep by 14 feet long by 14 feet wide.

## Portapungi Vehicle Barrier

The Portapungi, also manufactured by Western Industries, Inc., is a shallow mount barrier. See Figure 4-21 for photograph.

## De-Fender Series Retractable Vehicle Bollard Barricades

The De-Fender, also manufactured by Western Industries, Inc., is a retractable bollard barricade. See Figure 4-22 for photograph.


FIGURE 4-19. TI/TERIO VEHICLE RESTRAINING SYSTEM


FIGURE 4-¿ū. MAGNUM HEAVY DUTY VEHICLE ARREST SYSTEM


FIGURE 4-21. PORTAPUNGI VEHICLE BARRIER


FIGURE 4-22. DE-FENDER SERIES RETRACTABLE VEHICLE BOLLARD BARRICADES

## GLOSSARY

| Active barrier | Penetration-resistant gate which can be lowered or rotated to permit vehicles or pedestrians to pass into or out of the compound. |
| :---: | :---: |
| Bollard | Steel pipe filled with concrete used in fixed barrier construction. |
| DOS | Department of State. |
| Fixed (Passive) barrier | Barrier designed to remain in its original deployed configuration, i.e., it cannot be lowered or opened to permit vehicle or pedestrian passage. |
| K level | Department of State term to categorize attack vehicle speed to assess severity of impact. K4 includes speeds from 28.0 to 37.9 mph ; K8, 38.0 to 46.9 mph ; and K12, 47.0 to 56.9 mph . |
| Llevel | Department of State term to categorize the distance that an attack vehicle penetrates a compound. L1 includes distances from 20 to 50 feet; L2, 3 to 20 feet; and L3, 0 to 3 feet. |
| Measuring wheel | An instrument to measure long distances. |
| mph | Miles per hour. |
| Nominal speed | An approximated speed rencesting a small range of actual vehicle speeds. |
| On center | Measured from the center of an object. |
| Protective barrier | Permanent structure located along the perimeter of a compound designed to ward off high-speed ramming attacks by heavy, explosive-laden vehicles. |

TABLE A-1. CHECKLIST OF PERIMETER MAPPING CONSIDERATIONS

|  | Considered |
| :--- | :--- |
| Buildings <br> Outside the compound but To Be Considered <br> within 1200 feet of the compound boundaries |  |
| Sidewalks and driveways <br> leading to the compound |  |
| Streets <br> Outside the compound boundaries but <br> within 1,200 feet of the compound boundaries |  |
| Waterways (creeks, rivers, irrigation ditches, canals, oceans, lakes, seas) <br> Outside the compound boundaries but <br> within 1,200 feet of the compound boundaries and <br> at least 3 feet deep at their lowest (low tide or when drained) |  |
| Ditches <br> Outside the compound boundaries but <br> within 1,200 feet of the compound boundaries and <br> at least 3 feet deep at their lowest, and at least 10 feet wide |  |
| Monuments (statues, fountains, grave stones, works of art) <br> Outside the compound boundaries but <br> within 1,200 feet of the compound boundaries and <br> at least 3 feet high and 3 feet in circumference |  |
| Mountains <br> Outside the compound boundaries but <br> within 1,200 feet of the compound boundaries and <br> unpassable by 4-wheel drive vehicles |  |

TABLE A-2. SINES AND COSINES

| Angle | Sine | Cosine |  |
| :---: | :---: | :---: | :---: |
| 0 | 0.00 | 1.00 | 90 |
| 1 | . 018 | 1.00 | 89 |
| 2 | . 035 | 999 | 88 |
| 3 | 052 | 999 | 87 |
| 4 | 070 | 998 | 86 |
| 5 | 087 | 996 | 85 |
| 6 | 105 | 995 | 84 |
| 7 | . 122 | 993 | 83 |
| 8 | . 139 | 990 | 82 |
| 9 | 156 | . 988 | 81 |
| 10 | . 174 | 985 | 80 |
| 11 | 191 | 982 | 79 |
| 12 | 208 | . 978 | 78 |
| 13 | 225 | . 974 | 77 |
| 14 | 242 | . 970 | 76 |
| 15 | 259 | . 966 | 75 |
| 16 | 276 | 961 | 74 |
| 17 | 292 | . 956 | 73 |
| 18 | . 309 | . 951 | 72 |
| 19 | . 326 | 946 | 71 |
| 20 | 342 | 940 | 70 |
| 21 | 358 | 934 | 69 |
| 22 | . 375 | 927 | 68 |
| 23 | 391 | 921 | 67 |
| 24 | 407 | 914 | 66 |
| 25 | 423 | 906 | 65 |
| 26 | 438 | 899 | 64 |
| 27 | 454 | 891 | 63 |
| 28 | 470 | 883 | 62 |
| 29 | . 485 | 875 | 61 |
| 30 | . 500 | 866 | 60 |
| 31 | 515 | 857 | 59 |
| 32 | 530 | 848 | 58 |
| 33 | 545 | 839 | 57 |
| 34 | . 559 | 829 | 56 |
| 35 | . 574 | 819 | 55 |
| 36 | 588 | . 809 | 54 |
| 37 | 602 | 799 | 53 |
| 38 | 616 | 788 | 52 |
| 39 | . 629 | 777 | 51 |
| 40 | . 643 | 766 | 50 |
| 41 | . 656 | 755 | 49 |
| 42 | . 669 | 743 | 48 |
| 43 | . 682 | . 731 | 47 |
| 44 | 695 | 719 | 46 |
| 45 | 707 | 707 | 45 |
|  | Cosine | Sine | Angle |

## EQUATIONS AND WORK SPACE

Equation to compute distance in inches on scaled map from actual distance:

$$
\text { measured distance in feet } \mathbf{X} \frac{\text { inch measurement in scale }}{\text { foot measurement in scale }}=x \text { inches }
$$

Equation to compute actual distance from distance in inches from map: measured distance in inches $\mathbf{X} \frac{\text { foot measurement in scale }}{\text { inch measurement in scale }}=$ distance in feet

Setting up a scale:
measured distance in feet $=$ measured distance in inches

## EQUATIONS AND WORK SPACE

Equation to compute radius of curvature:


$$
R=\frac{C^{2}}{8 M}+\frac{M}{2}
$$

where $R$ is the radius of the curve in feet
$C$ is the length of the chord in feet
$M$ is the length of the middle ordinate in feet

## EQUATIONS AND WORK SPACE

Equation to find adjusted distance due to gradient:
$S_{\text {Equivalents with o gradient }}=S_{\text {Measureddistance }} \times$ COSINE $G$

